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Temperature as a bifurcation parameter in nonlinear electronic circuits
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It is shown that temperature variations can bring about a series of bifurcations in the behavior of a
nonlinear electronic circuit. For the semiconductor diode used in the experiments the increase of tem-
perature above room temperature yields the period-doubling route to chaos, periodic windows, and a re-
turn to the ordered state. The most striking finding is that over the temperature range which is of gen-
eral interest (i.e., just above room temperature) the temperature behaves as a genuine external control
parameter of the system. We explain our observations by suggesting that the temperature is a scaling pa-

rameter of the applied voltage.

PACS number(s): 05.45.+b, 73.40.Lq, 72.20.Ht

Probably the simplest system in which bifurcation phe-
nomena and chaotic behavior can be followed by well
controlled experiments is the nonlinear electronic circuit.
Indeed, it was a short time after Feigenbaum’s explana-
tion of the period-doubling route to chaos [1] that Linsay
[2] found it in a circuit composed of a resistor R, an in-
ductor L, and a nonlinear element which was a semicon-
ductor diode with a voltage-dependence capacitance and
conductance. In the many experiments [3-6] that fol-
lowed his work the circuit “control,” or “drive,” parame-
ter was the rms value V,. or the peak-to-peak voltage
value V' =V2V,. of the sinusoidal voltage applied to the
circuit. More recently, the role of the frequency of the
applied ac signal, f, has been studied [7,8] and corre-
sponding phase diagrams in the parameter space have
been determined [7,8]. Of course, the particular behavior
of the circuit in general, and the bifurcation sequence in
particular, depend also on the V-independent values of R
and L, as well as on the capacitance-voltage (C-V) and
current-voltage (I-V) characteristics of the nonlinear ele-
ment [2,8].

The purpose of the present paper is to point out that
the variation of the ambient temperature T of the non-
linear element is playing the same role as the variation of
V... We further note that while the variation in the tem-
perature amounts simply to variation in the characteris-
tics of the diode this variation is the only continuous and
controllable variation that can be induced from outside
the circuit. This makes the circuit temperature a special
bifurcation control parameter. The above observation has
two consequences. From the basic physics point of view
it raises the question of how do the changes in the diode’s
nonlinear characteristics determine the bifurcation se-
quence of the circuit in general, and how does the tem-
perature affect this sequence in particular? From the
more practical point of view, we note especially that, un-
like V,. or f, one is not always in control of 7. Hence
the possibility that an electronic circuit will get into a
chaotic oscillation mode, due to the rise of temperature
in the temperature range which is normal for electronic
circuits operation, should be of great concern to electron-
ic circuit-board planners. The understanding derived in
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this paper is expected to help in the evaluation and/or
the control of such effects.

The circuit studied in this work, which is shown
schematically in Fig. 1, as well as the procedure of the
measurement, were much like those originally applied by
Linsay [2]. We have used, however, the power diode
1N4998 instead of a varactor diode and operated the cir-
cuit at a much lower frequency to fit the range of our
Hewlett Packard 3582A spectrum analyzer. The capaci-
tance voltage (C-¥) and current voltage (I-V) characteris-
tics of such diodes are well understood [9] and are easily
measured [10]. They are well known to be weakly depen-
dent on temperature, in the reverse bias regime, and
strongly dependent on temperature, in the forward bias
regime.

Turning to the study of the bifurcation series, we have
followed the nonlinear response of the RL-diode circuit
by measuring the power spectra of the voltage across the
diode. This was done first in the conventional mode of
operation, i.e., as a function of the ac drive voltage V..
The results were very similar to those reported by Linsay
[2] (see also below). In our measurements of the power
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FIG. 1. A schematic description of the circuit used in the
measurement.
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spectrum as a function of the ambient temperature T, the
diode was immersed in a large oil bath and the tempera-
ture was monitored by a thermometer that was adjacent
to the diode. In this preliminary study we did not make
an effort to determine the temperature with a higher ac-
curacy than 0.25 °C, since this corresponded to our ability
to determine the onset of the various bifurcations on the
spectrum analyzer. The value of V,, its frequency f, and
the variable circuit resistor were chosen so that we ob-
tained as many bifurcations as possible in the tempera-
ture range studied. The latter range, i.e., 4=<T <160°C,
was chosen since it is convenient experimentally and
since it is relevant to applications under normal condi-
tions. We have taken then the values V,,=0.99 V and
f =15 kHz, when the passive parameters of the circuit
were R =50Q, R; =330, and L =81.6 mH. The variable
resistor was set at zero. Hence, in the results obtained,
the 15-kHz peak is simply the fundamental spectral peak
and the peak at f=0 is the Fourier transform
“reflection” of this peak [11].

The evolution of bifurcations as recorded in the above
temperature range is shown in Fig. 2. In Fig. 2(a) one ob-
serves a tiny reminiscence of the first bifurcation peak in
order to mark the end of the simple periodic (“ordered”
or “linear”) behavior of the circuit. The well developed
(or saturated [2]) first pitchfork bifurcation is shown in
Fig. 2(b). This bifurcation is followed by the second [Fig.
2(c)], the third [Fig. 2(d)], and the fourth [Fig. 2(e)] pitch-
fork bifurcations. The behavior shown in Figs. 2(b)-2(e)
is in agreement with the pitchfork bifurcation sequence
observed by Linsay [2] and by Testa, Perez, and Jeffries
[3], except, of course, for the fact that the bifurcation se-
quence is controlled here by the temperature rather than
by the applied ac voltage.

At higher temperatures, in Fig. 2(f), we see the onset of
chaotic (or a continuous spectrum) behavior. The struc-
ture observed in the continuous power spectrum reflects
the nonuniform probability of finding a given frequency
in the corresponding chaotic regime. Indeed, the higher
amplitudes of the relatively wide peaks correspond to the
darker “vale regimes” in the bifurcation maps [1,11].
Above the two-band chaotic regime which we call Ch,
[Fig. 2(f)] we find a variation in the continuous noise
character. We denote this chaotic regime Ch, [Fig. 2(g)].
The chaotic regime Ch, is followed then by period tri-
pling. This feature, which is shown in Fig. 2(h), is just
the period-3 window found, beyond the chaotic regime,
in many [4-8] (but not all [3]) RL-diode circuits. Note
that the equal amplitudes of the window peaks are in
sharp contrast to the rescaled amplitudes which charac-
terize the period-doubling route to chaos (see above). A
further increase of the temperature drives the circuit
back to its “ordered” periodic mode by reverse bifurca-
tion. This is reflected by the period doubling seen in Fig.
2(i), which is followed by the periodic behavior seen in
Fig. 2(). We did not find any more bifurcations up to
T =160°C, which was the highest temperature applied in
this set of experiments. The latter observation is not too
common in the bifurcation maps of RL-diode circuits
when V. is the control parameter, but it has been ob-
served [7]. However, as far as we know, this behavior has

49 TEMPERATURE AS A BIFURCATION PARAMETER IN . .. 111

not been discussed previously (see below). Following the
above results, we can conclude then that the temperature
acts as the drive voltage, i.e., as a “genuine-independent”
control parameter of RL-semiconductor diode circuits.
Following the above behavior, the question that arises
is, which of the better known theoretical predictions can
be tested if we assume that the temperature is a genuine-
independent control parameter? Naturally the first pre-
diction that comes to mind is the universal bifurcation
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FIG. 2. Power spectra measured in the circuit shown in Fig.
1 using the diode 1N4998. The applied sinusoidal voltage had
an amplitude of V,.=0.99 V, adjusted so that with f =15 kHz,
the circuit is at the threshold of the first bifurcation at T, =4°C
(a). The first clear pitchfork bifurcation appears at T, =7°C (b),
the second pitchfork bifurcation is clear at 73;=98°C (c), the
third pitchfork bifurcation is clear at T,=108°C (d), and the
fourth pitchfork bifurcation is found at 109°C (e). With a fur-
ther increase of temperature, e.g., at T5s=110°C, a continuous
two-band chaos takes over (f), and then it changes its character
at T=118°C (g). Beyond the chaotic regime, at 7=132°C, one
finds a period-3 window (h), which is followed by period dou-
bling at 156°C (i), and then a return to the periodic behavior at
T =160°C (j).
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convergence coefficient, which is obtained by measuring
the increments in the control parameter between subse-
quent bifurcations [1,11]. In Feigenbaum’s universal
theory [1] for the one-dimensional map this value for the
higher bifurcations is §=4.669. From Figs. 2(b)-2(d) we
see that (T3—T,)/(T4—T3;)=9%1 and from Figs.
2(c)-2(e) we see that (T,—T,)/(Ts—T,)=5%1. As we
argue below, these results are in excellent agreement with
the universal predictions. Amnother agreement with the
Feigenbaum theory is tested by turning to the other pre-
diction of Feigenbaum’s theory, i.e., the universal rescal-
ing factor a. This is done here by considering the rescal-
ing exponent of the power amplitude in consequent
bifurcations p, which is simply related [1,11] to a.
Feigenbaum’s prediction [1,2] for u is that the ratio of
subsequent period-doubling power-spectrum peaks is 8.2
dB. As is clearly seen in Figs. 2(b) and 2(c) the experi-
mental ratio is 91 dB. The agreement of the above re-
sults with the Feigenbaum predictions is an indication
that in the corresponding temperature range the tempera-
ture can be considered to be a simple control parameter
of a one-dimensional map.

Looking for an explanation for the above-described
behavior, we have considered the simplest model suggest-
ed thus far to account for a voltage-driven sequence of bi-
furcations in RL-diode circuits. This model consists of a
two-segment piecewise-linear capacitor [6]. In this model
the nonlinear element is a diode which has a low
constant-value capacitance C}, under an application of a
bias that is lower than a certain threshold E,, and a high
constant-value capacitance Cj, under an application of a
higher bias. In this model the diode has an infinite resis-
tance and thus the nonlinear behavior is solely deter-
mined by this capacitor. For our purpose the most impor-
tant conclusion of this simple model (which was analyzed
analytically [6]) is that the drive parameter in such a non-
linear circuit is V' /E rather than V.

Turning to the real nonlinear element used in our ex-
periments, we have noted, as have previous researchers
[5,7] that by displaying the voltage drop across the diode
(in the circuit shown in Fig. 1) on an oscilloscope, one
finds that under the forward bias portion of the cycle this
signal has a wide flat maximum at a voltage value V.
Considering the C-¥ characteristic of the diode, we know
that ¥, corresponds to a certain value of the forward bias
capacitance C,. In our experiments we found that, while
V, depends on the ambient temperature, the correspond-
ing capacitance associated with V; is essentially indepen-
dent of temperature. Its value, as determined from the
C-V characteristics was found to be about 2.5X 107 °F.
We thus suggest that to a first approximation the real
nonlinear element in the circuit studied can be described
by the above two-segment piecewise-linear capacitor
model, where C, is the constant capacitance which is ob-
tained at the forward saturation value V,. We identify
then the C, value of the real diode with an effective C)
value (see above). Consequently, we suggest that the
main effect of the temperature variation on the diodes’
operation in the circuit is the variation of V. In our cir-
cuit, over the temperature range under study

(4= T =160°C), the measured dependence of V', on T is
well approximated by

V,=0.51—0.0029T , M

where ¥, is given in volts and T'in °C.

Following the above comparison between the real
diode behavior and the simple model behavior, it is quite
natural to identify the observed value of V, with the
value of E, in the simplified model [6] described above.
This point of view is strongly supported by the observa-
tion that one can use V'/¥; as a “reduced drive parame-
ter” [5] as well as by the behavior observed in Figs. 2(i)
and 2(j). This latter finding of the return of the circuit to
an ordered behavior at high temperatures, combined with
Eq. (1), indicates that this behavior is associated with the
V; approach to a zero value. Indeed, we have confirmed
that this is the case by computer simulations [12] of vari-
ous RL-diode circuit models that show such a behavior
when V, or E, approach a zero value. In our present
study the increase of temperature [as can be seen in Eq.
(1)] amounts to the decrease of ¥V, which we interpret as
the decrease of E,.

Identifying E, with ¥, we are now in a position to ex-
plain the observed series of temperature-driven bifurca-
tions. Let ¥, denote the threshold voltage for the nth
pitchfork bifurcation when E| is fixed and let E be the
threshold value for the nth bifurcation when V is fixed.
The assumption that the circuit control parameter is
V /E yields then that

(V,_,_V,, "1)/(Vn*livVn ,2)
=[(E§—E§ "W(E; ' —Eg DNEG */EG) . Q)

Using Eq. (1) and our identification of V,=E, we may
thus conclude that

(Vn_Vfrfl)/(Vn*l_VnA?_)
=(T,—T, )/NT,_,—T,_,(EL"2/EZ). (3

Hence if the ratio on the left-hand side approaches the
Feigenbaum 8§, the ratio on the right-hand side should
also do so, but the convergence will be slower. In order
to check this argument, and in order to map the general
behavior of the circuit, for the effect of the as yet unstu-
died but important temperature parameter, we have mea-
sured the V-T phase diagram. The results are shown in
Fig. 3. This phase diagram has been obtained by increas-
ing V,. at fixed T values, in variation with the fixed-
V, —variable-T sequence studied above (see Fig. 2). We
note that for the higher bifurcations (above the period-3
window) our map, like the V-f map [5,7], shows hys-
teresis effects such as those to be expected from the fact
that the system has multiple basins of attraction [4,11].
Qualitatively, the sequence of bifurcations and the “para-
boliclike” shapes of the boundaries between the different
“bifurcation phases” resemble the results obtained for the
V-f diagrams [7]. The boundaries beyond the chaotic re-
gime, and their dependence on the initial conditions, will
be discussed elsewhere [12]. For the justification of our
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FIG. 3. An experimental phase diagram in parameter space,
for the circuit shown in Fig. 1, using diode 1N4998. The vari-
ous notations indicate the phase-space region of a particular bi-
furcation. Hence, the 2, 4, and 8 numbers indicate the order of
the pitchfork bifurcation, the 3 and 6 numbers indicate the
periods in the corresponding windows, while Ch,, Ch,, and Ch;
are different chaotic states that are characterized here by
different power spectra [see, e.g., Figs. 2(f) and 2(g)].

interpretation of the observed behavior, the most impor-
tant observation concerning this figure is the
confirmation of the prediction given by Eq. (3). Indeed,
following the ¥, series for a constant temperature we find

that (VZ—Vl)/(V3"‘V2) and (V3"'V2)/(V4—V3) for a
given temperature are of the order of 5, i.e., very close to
the Feigenbaum 6=4.699. On the other hand, we find
(see also Fig. 2 above) that for a given V. the value of
(T,—T,)/(T3—T,) is of the order of 9, while the value
of (T;—T,)/(T,—T,) is of the order of 5, in good agree-
ment with the predictions that follow Egs. (1) and (3), if
we use our Vf=E0 identification. Hence, our crude
determination of the above ratios lends strong support to
our suggestion that the temperature (via V) is a voltage-
scaling parameter. In view of the above observations we
speculate that the E; parameter (the precise definition of
which may vary for various nonlinear circuits) is the
principal voltage-scaling parameter that determines the
bifurcation series in nonlinear electronic circuits. How-
ever, more work is needed to confirm or disprove the gen-
erality of this suggestion.

In conclusion, the effect of temperature on the diode
characteristics appears to make this parameter a
genuine-independent control parameter in nonlinear cir-
cuits. This parameter appears to have the role of rescal-
ing the circuit drive voltage in the temperature range,
which is very important for practical applications.

The authors are indebted to G. Biton for discussions
regarding the interpretation of the present results and to
A. Porter for a critical reading of the manuscript.
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